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The energy of a solid material is comp‘wed of two factors: (L) The
potential energy of the atoms due to the existence of the other atoms
in the meterial (2) The thermsl energy, which is the sum of the oscile
leting energies of sll atoms ebout their equilibrium positions. Accorde
ingly, all functions of crystalline solide cen be derived, 1f logical
potential functions between atoms and responses to deviations of atoms
from equilibrium positions based on these functions are msm. Many
of these theoretical relsbtionships were derived in the first three
decedes of this century. Experimental verificstion was impossible,
however, until development of precision equipment such as stable Xray

diffraction units, equipped with modern electronic sounters end both

nigh end lov tempersture operationsl cepability. This type of equipe
ment has become commercially savailable only in recent years.
Bpecifically, the concepts which led to a relationship between
the mesn vibrational smplitude of the atoms in & crystsl and the thermal
expansion of the crystal were developed by Gruneisen in reference 1
and later reconsidered with some clarificaetion by Roberts and Miller in
reference 2. The derivation of this relationship will be presented
herein in grester detail then that vhich is currently found in the pube
lished literature. Experimental dsta reported in the litersture will
be cited to shov the functional sceurecy of the relabionship, and the
constants of the eguation for several pure metals with cubic lattice

structures and four compounds with NaCl structures will be calculated.

i
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Y. 1LIST OF SYMBOLS

sttractive constant in the relation for the potential energy
of & mole of solid crystalline material

attractive constant in the relation for the potentisl emergy
of & pair of stoms

Jattice parameter

linear thermal expansion

repulsive constant similar to A
repulsive consteant similar to a
eonstant

specific heat st constent volume

atomic elastic force constant
themmal energy of stomic oscillations per mole
foree
free energy
log {1 « &%)

a9

o

w |
Planck's constant
intensity of diffracted Xereys
Bolzmann's constant

A summation term
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exponential factor in the Debye-Waller formula for reduction
of diffracted Xeray intensity with incressing temperature
atomie or molecular weight

attraction exponent in the relstion for the potential energy
of a pair of atoms

Avogsdyo's rmmber

repulsion exponent similar to m

Vo
LES

summation factors

universal gas constant

distance between nedghboring atoms, bssed on m;: m&gme
mean distance between neighboring etoms ’
entropy

temperature

total energy per mole

volume
volume thermal expansion
number of stoms per unit cell for a specific lattice

configuration
compressibility at absolute gzero
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a8 factor in the relationship bebtween vibz*;i!;wml amplitude
and thermal expansion which depends on the potential
function under consideration

grineisen's constant

VeV,

small stomic Gisplacement from nmean position

Ly
7]

weight of one stom

Debye charscteristic temperature

Bragg diffraction angle :‘

angle between the direction of atomic displacement and the
line between stoms of an stomic pair

angle of the line between atoms after the displacement, 8x,
relative "&c its position before dlsplacement, whm' 8y = o0°

frequency of & wradiation used for diffraction study

moesn square vibrational eamplitude
frequency of atomic vibrations
Debye frequency

the specific number of am separated from & given stom by

the distance k'r, in e specific lattice configuration

& lattice sum

total potential energy of the atoms of a mole of crystalline
msterial
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% ¢ minus the potentisl energy of oscillation

¢ potential energy of a pair of atoms

epk stiractive potantial energy of 8 single atom due to the other
gtome in a mole of the material

% repulsive potential energy similar to a;;%

x
#(x) the Debye funchion: @#(x) = fé' fu ;é:i- ag

¥(n),¥(n) lettice sums for attractive and repulsive terms, respectively,
which depend only on the form of the lattice and the
potential law between the atoms

Bubseripts:
0 sbsolute gero conditions, T = 0, p = Q
ot room temperature value

any specific tempersture other than zero

index of summation for the lattice sums
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vI. GUALITATIVE RELATIORSHIPS

The potential energy of & pair of atoms includes two terms:
(1) A repulsion term which will be predominant when the distance
between the atoms is less than some equilibrium distence (2) An
sttraction term which will be predominant for distances greater
than the equilibyium distance. A graph of the net potential energy
a8 a function of distance between atoms will show & minimum at the
equilibrinm distence, T,, 86 indicated in figure 1. Oince force is
the negative derivative of the potentisl energy, the net force
between the two stoms will be repulsive when the eatoms are closer
together than the egulilibrium distance, atbtractive vhen they are
fearther apart than L The éh&éas of the curves i the repulsive
and attractive forces against the interatomic distance are shown
in figure 2. The net force curve is alse shown. It should be noted
that 1f the net force curve was a straight line, there would be no
explanation for thermal expansion with lncreasing temperatures,
gince the equilibriuwm position of each stom would still be the ssme,
even though the vibrationsl smplitude was incressed. For the net
force curve shown in figure 2, however, the force restoring the stom
to its equilibrium position will be less with incressing distances
between the atoms then decremsing distances, effectively increasing
the mean distance between atoms with increasing vibrationsl smplitude.
This will provide for thermal expansion when the vibrational amplie

tude increases with increasing temperature. The form of the relatione '

ship between vibrational amplitude spd thermsl expansion is considered
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in the following paragraph and the specific constants of the relatione
ship will be determined later in this thesis.

It will subsequently be shown that the relationships for the potene
4ial energy of s palr of gtoms Iin the crystalline matrix and the
potential energy of & mole of the crystelline materlsl sre of the sane
form. Accordingly, the curve of the potential energy of the system
ae & function of the mesn distance between the atoms, shown in figure 3,
is guite similar to the net potential ensrgy curve of figure 1. 1In
figure 3 it may be poted that as the temperature of the system increases
from !{'a to T, the potential energy of the system increases, due
to lattice expansion alone {considering all atoms fixed in their mean
positions), from“ PE,_{,G -io PE.I,l and the mean distance between atoms
incremses from r, to ry. Any displecement, Bx, of an atom from its
meen position at this temperature T, must increase the potentisl
energy of the system according tc the FPE versus 6x curve, which has
been superimposed in figure 3 (the scale of this letter curve has been
highly magnified). This PE versus Bx curve is parabolic because
of the argument given in appendix A, vhich leads to the linear relationw
ship between the mean squere vibrationsl amplitude, .:2 , and temperature.

It is well known thet the relationship between thermsl expansion
and tempersature is epproximately ;inear for crystalline solids. Since
the relsationship between ‘:2 and temperature is also spproximabely
linesy, the relationship bebween mean gquare vibrational amplitude and '

thernmal expansion should be linear, and this will he verified herein.
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In accordance with the concepts discussed in the preceding

section, the potential energy of two stadtionary satoms iz given by:
o= £ . & (1)
i Al

Repulsion Attraetion
tem term
Appendix B presents the development which leads to the mesn value of
y
the potential energy per mole of crystalline solid.
The force between the etoms, due to the potentiel energy given

in equation (1), is:

‘ : S, mal
£2{r) = -g = vl {2)

Referring to eguetions (1) end {2), n must be larger then m to
meet the reguirements previously steted.
Considering the force relationship of equation (2}, the fre=

guency of the atomic vibretions is derived in appendix € to be:

2 222/ Sy 13

(3)
. M Xy
in sppendix D, the relstionship between thermal expansion and
vibrational energy is shown to be:
A
- (%)

E
Vo @
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The mean square vibrationsl emplitude of the stome of & crystal-
line monsbomic snlid iz defined by

B = % ﬂ!gveaf:éﬁe

%vcam%% (5)

and, from equation (3):

2 o TR T A
e = & .

X, V022/35,50 'rg’”’xo 2

. Combining this with equations {D-21) and (%), ihe relstionship

between the mean square vibrational emplitude, u, and the thermal
expansion, ?-Q», becones
o

| 50 a (7)
B2y,

ol



Vibrationsl Amplitude

Relationships for the calculation of mesn square vibretionsl emplie
tude from Xeray diffrection date were developed by Debye end Waller in
the early part of this century. The specific equations have been given
in seversl publicationsz, of vhich reference 3 is an example.

The reduction of the intensity of scetiered Xerays with incremeing
temperature 1n cubic crysials of one kind of atom is expreseed by the
Debye«ilallier formmla:

Ip = I, e~ (8)
vhere:
¥= M (9}
3

¥ msy aleo be expressed 1n terms of the Debye tempersture, €, ast

_ 6nPain?0 {:¢(x) } (10)

nk@?&l

where x = ©fT and #{x) 1is the Debye function, defined by equation (b-v;’;»)';v.
Solving equations {9) and {10) for the mesn squsre vibrational |
emplitude, the following ls obtained:



1l =

Joo? ) 2\ _onPw ) gx) L2 (1)
bPkme | X b nefgec| x B

Bubstituting suiteble values for the constants, the following eguation
gives p° in om?s

W2 ke 3‘5’* < 10714 {M* ...} (12)

Considering equation {12) it may be noted that the meen square
vibrational smplitude which provides the zero point energy is:

5 ku3bh x 3071
g, ©

» om® (13)

In order to change the bracketed term in egquation (12) isto & form
more essily calculated, both sides are multiplied by =x/x to give:

— »1h
FZQ kaﬁ& X 39 {g(x} + m}

. 4.364 x 10™ l"T f¢(x) . ;_:_}’ o (1)
e L b
A graph of the function ¢(x) + x/5 wversus x ie glvem in figure 5.
Experimentally determined values of € at various temperatures
wvere presented by Owen and Willlems for almnimm, copper, and gold in
reference 4, by Chipman for lead in reference 5, by Simersks for silver
in reference 6, by Gaszara for iron in reference 7, and by Houska for

tungsten, titenium carbide, zirconium carbide, titenium nitride, and
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zirconium pitride in reference 8. These data ax:e grephically presepnted
in Plgure 6. Values of pe calculsted from these date using equa-
tion (1k) sre given in teble I and figure 7. From extrapolation of the
date in figure 6 to 0O° K, gero point mesn square vibrationsl amplie~
tudes were caleulated using equation (13) and ere also given in table I
and flgure 7. It should be noted that the date for the compounds
sogumes equal amplitudes for both kinds of atoms, which wes shcm; in

reference 8 to be s good approximstion.

Thermal BExpansion
Experimentally determined velues of linear thermsl expansion at
various temperstures are given in reference 3 for elumioum, silver,
gold, irvon, copper, and tungsten, in reference 10 Jor lead end in
reference 8 for titenium carbide, titanium nitride, zirconium cerbide,
and zirconium nitride. The varistion of thermsl expension with

tempersture for these materiale is shown in figure 8,
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IX. RESUIAS AND DISCUSSION

Using the values of mean square vibrational amplitude from teble 1
and thermal expansion from figure 8, the varistion of we with the
product of linear thermal expansion and 3’02 is shown in figure 9 for
the meterials considered herein. Values of the latiice parameter,
ae" » used to calculate r, from equstion (B-2), were obtained from

refevences 8 and 1l. For isotropic materisls:

A &* - ¥
V. = ~ (15)

so that equation (7) can be written:

— 2t . .
2. Zele mg) (16)
3,!‘.7,22%;

Calculstions of the factor =© were made from the slope of the
lines of figure 9, using equstion (16) and velues of 7 from refere
ence 1. These values of 22 sre listed in table 2. Although room
tamperature values of the lattice parsmeter and linear thermal expanw
gion baesed on room temperature dets were used In the caloulations
when the relation is based on absolute zero values, the errors in the
%2 values due to these substitutions will not be substantisl end may
be considered insipnificant for the purposges of this study.

Of considerable significance in these resulte in the fact that the

curves of Tigure 9 sre straight lines for all the elements and compounds
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considered herein. This proves the functionsl sccuracy of equation {7),
which was evolved from basic privciples concerning the energy Tunciions
of erystelline solids.
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X. COWNCLUSIONS

The functional eccuracy of eguation (7), derived herein from
basic principles, is proven for various cubic lattice elements send
compounds by the mpeﬁmtal dsta cited. The use of the calculated
velues of the constent of the cquation, 22, to determine the cone
stants of the potential energy function for the atome of crystalline
solids cennot be attemplted until more date Is availsble for velues
of some of the constantes or until s pct;zstial function with fewer
congbants can be considersd.
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APPENDIX A

THE FORM OF THE RELATION BETWEEN VIBRATIONAL AMPLITUDE

The sverasge vidbrabionsl energy of s mole of crystalline solid isi
E = 3H6T (As1)
so that the sverage Vibrationsl energy of eech stom la:
By = 3KT (a-2)

Referred to any given sxzis, the Xeaxis for instance, the aversge
vibrational energy of each atom is

B_= Kt (ae3)

Assuming the law of eguipartition of snergy to apply, the
potential energy portion of the sverage vibrational energy expressed

in equation (A-3) is %Elx ors:

() -} -
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This potential energy is also releted to the displecesment of the sbtom
from ite mean position, referred to the Xeaxis, 8x. This relstionship

isz
PRy, = 3 Pk = & D(&)? (a-5)

The mean square vibrational amplitude of the atoms, referred to

the X-axls, %2 s 18 the sversge squared displacement of the stom from

its meen position, that is:
< (Bx}:‘%v — {(a-6)

Bubstitubting into the potential energy equations, the following
result is obtained:

<m1x>a ; <(&)2> % En%m

“32 = %’f (A»?)

vhich shows the linesr relationship bebween u‘? and potential energy

and between ;;2 and t@memtum.



APFENDIX B

The potential energy of a pair of atoms is given by:

b . A
@= 5 - (1)

Repulsion Attraction
torm tarm

Consider a solid under zero externmel pressure (p = 0) end at

a temperature of absolute zero (T = 0). HNeglecking the small vibraw

tional smplitude at absolube zeéro, it can be assumed that the sboms

are ab rest in their squilibrium positions. For those conditions,

the volume cceupied by a mole of the solid is:

?g ) ﬁrgf’ (Bol)

Yalues of r, ocen be calmulsted from tebulated valuse of lattice

pareneters by the following relstionship:

t 3
%lmmamaﬁ%marg

. ' xe
rﬁam% (3&2)
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‘i’fie factor w eguals 2 for the body centered cubic ;Latiiee s & for
the face centered cuble latbtice, and 8 for the NaCl lattice.

To estimnte the value of the potential energy of & single ston
which arises from the atiractive forces of the other atoms in the
lattice, note that & specific mumber of atoms, Va2 will be separsbed
from the given stom by the distance k) r_. The sttractive potentiel
energy is:

. . v
Pao = * %" . %’ mﬁ (B3)

where the % i the result of the considerstion that each atom of e

pair corbaineg helf the potentlal energy of that pair. The sum is taken
for all values of A s0 as fo include all the stoms of a mole, but

for all practical purposes the summetion mey be discontimued much soconer,
when the distance outside which the stoms do not appreclsbly affect the
pobential energy of the atom in qmtim iz reached. Similerly, the
‘potential energy of the single atom due %o the repulsive forces of the
atﬁar atoms in 8 mole of the materisl iz gilven by:

oip ) ek (Bb)
it LR

The factors which depend only on the nature of the lattice and on the
exponents m and n can be collected, so that the following quantities
can be defined:



n = Z T B L T (23
L

The attractive forces are such thet ¢, can be accurstely celculsted
considering only the nesrest nelghbor stoms. In this case & good
Bubstituting these guantities into equas
tions (Be3) and (Beh) end sading them together, the net potentisl
engyvgy of the gingle stom becomes: A

1bo |
%o = o * %“‘é“”‘g"% (6]

The total potential energy of the atoms in the mole, at
T=0 and p =0, 16 obtained by mltiplying squation (B«6) by K:

3.%3 180§

(Be7)

8 =

(8-8)

end collecting all teyms independent of volume into constants:

I RV, S | 341 |
A mem“/ s B a%“"/ (8+9)
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the total pﬁ)‘b&ﬂﬁﬂl W beconos

B o o (B-20
o Y W ( )

Asmume that the temperature is now raised Lo simpe walue, T.
Under the previous sssumptions, the separation of the atoms incresses

use the atons are noy oscillating about new mean positions (centers
of the oscilletions). The mean value of the total potestial emergy per
mole now becomss the sun oft (a) The potential enevgy which the atoms
would posgess if they were at rest in the centers of their oscillations
and {b) the mean velus of the potential energy of oscillstion of all
ﬁw stoms. (a) 1s obtained divectly from eguation (Ba1O) by eube
stituting V for V,!

¥Yor (b) the oscillations of the atoms are assumed to be undsmped

harponie oscillations. ‘The total energy of these oscillations can
be expressed as the increase of energy per mole when a solid is
hented from sbsolute sere to the temperature, T, at ¢oustant wolume:

szguvaw (B~12)
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he encrgy of the oscillation is half hinetic and half pobential
{equipsrtition of energy), so that the potentisl energy of the
oseillation is %E and the mean value of the totel potemtial
W&'WM&;M

éaﬁgaﬁg*%ﬁ

(B-13)



The frequency of the atomic vibrations can be caloulated from the

raestoring force on M stom which is displeaced from its mean position

in the lattice. PFor simplification, it will be sssmed that one atom,

P, is displaced and that all other atoms sre at rest in thelr mean
positdens. Tuis situstion is illustrated in figure b,

The atom P is displaced by & smsll distance, Bx, t0 position
Q. Consider the effect of the displacement on the force exerted on
P bystoms A and B. The distances bebwoen atoms are AP = ¥,
BP = v, MQ=r 4 xcos &, M= vxcos 8. If the repulsive
force between sny two atoms is £{r), then the force due to stom A
on stom P, vhen it is ot @, is £(r + x cos 6;) along the line
AQ, or f£(r + x cos & )cos 8 in the direction Q. If the same
force convention is uped, then the force due 0 B on P, at @,
is «f{r « 8x cos 6yJcos 6; in the Glrection FQ. The totel force
onetom P due to atome A end B is:

?@’rnWQ% f(r%&xmel)»f(ru&xmel}}

Vhen Sx is smmall, each force function in the sbove can be approxs
imgted by the first two terms of & Teylor seriess

£(r + Bx cos 8;) = £(r) + Bx cos Oy azgrg
r

{C-1)

(c-2)



. 30

Using this approximstion, egustion {Ce1) becomes:

J ot of(» , it(xr
Fﬁﬁ;? = CO8 Gl{f(r} + 8x cos 8 ..éi-l o £{r) + Bx cos 63. __.a_é__l}

wmel{mm o ezl

= 2 %%E_)_ &x Gﬁﬁael {Ca3)

1% should be noted that any force on atom P at right angles to 8x
due to stoms A and B will be sxectly balanced by an opposing force
due to atoms D and E.

The force between two stoms wee previously given by equation {2):

#{r) = 2. *%-" (2)
il
so that:
of(r) . n{n + 1)b . nim + 1)a (Cat)

Bubstituting this into eguation (Ce3):

(css)

Bp,p - 2x [ 2lm + 1)a magg _8{n+ 1) 998291} A

L o2 P2

Thic is spplicable to all pairs of atoms which do mot lie in the plane
through P ab right angles to Bx. Considering stoms in thais plune,
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such as € and P, the forve scting on atom P, at Q, in the direction
PO, due to € and ¥ is:

Fop,p = 28{r)sin 6,

, oo BX e ‘
F&'}F,P 2 - £{r) {C-5)

vhich, en substitution for ¥#(r}, becomes:

Fop p = 20% {- % + &} {c-7)

To obtein the total force acting on the displaced atom, the
affects of all the atoms must be summed up. Considering T o be
the distence between the meen positions of two neighboring atoms
in the lattice, then the distence between the Ath stom and the
displaced atom is}

. T = k}\’ F (ﬁ*ﬁ)

wiere k' is o numerical fector. In summation then, the force due
to the H stoms in a mole on the dlisplaced atom 1s:

o ) gy m{m+ e . g, 'n{n + 1)
o %{(W}”"%M (1cn? )22 (c-2)
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vhere A has &ll telues Irom 1 to Hel, vhere for all stoms vhich do
not lie in the plane through P et right sngles to Bx (such as
atoms A, B, D, and B):

g?\ = g’;\’ = % maa'&l (c"m)

and vhere for all atows in this plene (such as atoms € end Pt

asng‘ : ; 'még’- - AP I
b R ey ) 2 (o + 1) (c-11)

The factars % in equations (C«10) and (Cell) result becsuse the atoms
have been considered in paire, such as A end B, or € aend ¥F; in
equations (C-5) and (Ce7).

Referring to equation {C«9), the sums which depend only on the
form of the lattice and the force law between the atoms but are

independent of ¥ can be collected into the form:

, ™ gy mim + 1) g 'eln + 1)
W) = ) ey, Y1) = ) e {C-12)
2{ ;&A,}mﬁ %_. fk}x'] neE

On substituting (C=12) into equation {Ce9):
F = aax{ﬁgfg— . 93;‘%% (c-13)

The restoring force, acting to return sbom P Ffrom € to its
nean position, at P, is:

F = wlbx {c-ak)
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So that, considering equations (C-13) and (C-1}4):
p = 2, b¥2) _ aylm) (ca15)
R gl

Assume that, afber the dlisgplacement 8x, the atom P is released
from position Q. It would then vibrate with simple harmonic motion
gbout point P, much like & weight on a spring wiﬁh a spring constant
equal to D. The frequency of this vibration will be given by:

v = ;;%5% (c16)
R

and, in this case, v is the frequency of the stowlc vibration. On
substituting (C«15) into equation (Ce16):

o2 | b¥ln)  ay(a) (c-
bl | g2 e (6-a7)

b can be eliminated from equation {C«17) by the consideration that, at
absolute mero, ¢ is a minimum, so that by differentiating equation (B.7)
and egumting the result to 0:

Som——" Y %
T® rt
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On gubstitutions

W2 o 3% na fe(n’awﬂn) _ ¥=)
%

ro N ﬁn) w{ﬁ) {Cc-19)
&a’&’w

It will subseguently be shown that the compressibility st
absolute zero is:

. i (D-26)
™ - W)0,8

Substituting this into eguation (C«10):

2 o e JE M m M
bPn(n - m)xo P2 oy,
v = ( m“@(n) V(m)
&m@u(n - m)xe EWQ
18r, v(u) r)”’a ¥m) =z, 22 ,
v bafn(n « m)x, b, oy ¥ (¢-20)

Fow, substitubing the atomic volume, V = BF?, and the atomic welght,
H, = i, into equation {Ce20):

s (w6 0¥ o




Q8
1/3
/3 8. Vo©
ve = 2892, % = {3)
wharet
N N m(.,g }
ba2{n = m) ) (G-22)

since (V,/V) is always of s mmgnitude close to 1 for solids, %2 nay
be considered independent of volume.

The frequency, v, calculated by the above method, is similar to
that for an Binsteinien oscillator. A more refined itrestment given
by Debye considers that in a real solid, all the atoms surrounding the
displaced sbom are free €0 vibrate when the displaced stom i released,
In such e case & whole gpoctrum of 3§ freguencies per mole would be
obteined. Further ramification of Debye theory are considered in the
next section (Appendix D).



APFPERDIX D

As previously considered in appendix A, the total enem

in the material must include both the potential energy of all the atoms
in the mole, considered to be et rest in thelr mean positions, plus the
thermal energy generated by the stomic oscillations:

U=§6,+E {Ds1)

The Debye approximstion gives the following for the osclllating
energy of & wonstomic isotropie meterisl:

E= W@) (p-2)

vhere!

#ed = 3 L * 3{: at (0+3)

hy
(= (D)

The Pebye characteristic tempersture is given byt

@aﬁ; (55)

wvhere the frequency, v,, is spproximately an limit of the elastic
spectrum of oscillationg for the material. This upper limit is attained
when neighboring atoms oscillste head on with 180° phese shift.
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In sccordance with the preceeding, the free snergy of a mole of
monstomic solid, oscillating at the frequency v, I1st
Fo=U=18
Fe = 8 + zsm(g) (p6)
vhere:
Flx) = log({l » &)

The equation of stabe can then be derived as follous:

A
P AT mee

@A e

L oS
oY dlog V
The Griineisen constant is defined as:
o 020g 8
Y 3oV (Dw9)

From equation (D«9) it can be noted that ¥ showld be spproximately
independant of tempersiure. For different elements, the Grineisen

constants are of the same order of magnitude. Although the Griineisen
constant is defined for mons

tomic solids, it hss been found empirically
thet for simplest

ompound lattices such as the Nall +type, v is of
the ssme order as the mean value of v for the monsbomic elements.
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On ssoumption of the potentisl function defined in equation (1)
and considered in eppendix A, the eguastion of stabe for lsotrople
monstomic solids with vegular crystallization becomes:

peB A B B v . \u {D-10)
3 By 3 By,
v v
o
F?*@(?}wfﬁ {M)
where:
o vae
GV} = Dal2
{)' p (D=12)

ixpanding G{V) into & Taylor series in temme of 4, where

A=VeV, and ¥V, is the voluwme at T =0 and p = 0, glves:
a(v) = 6(%) + A E;*(vo)] + % s”{vﬂ):] # ses {De13)
It has slready been noted thed, at absolute zero, the potentisl energy

30
iz a minimum, so that -gvﬁ = 0, snd, considering equation (B-10):

S . (De1b)

Therefore:



*

8{V,) = 0

The compressibility at p =0 and T =0 is:

By
x,,.,-.%..,@x) i o VS
Vo \82/p=6, =0 a'(v,} =min «~n)a

80 that:

ﬁ't(v(;) W ow -—-—'3:-*-
% ¥

and, by a sinllar analyslis:

a“‘v)w-(m,"””) 1
(Vo . -y

Sumring up the preceeding, eguation (Del3) becomes:

a{v)uf{l.m*“-”i*..{l
Xq 6

L)

(D15}

(p-16)

{D17)

(p-18)

(D19}
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and, vhen p = 0, the equation of state, equation (Dell), becomes:

ﬁ}%@(\V) a ¥HE
L l1.02n238 . | 1B {p-20)
%o 6 Yo

Since the therma) expansion of solids is always guite small com
with 1, the term [m rot g ;s%»-i- ..,:] may be neglected with sn error
Yo

of no more than s few percent, so that:
% = YH (Ml}

Fow, defining the quantity Q,:

v
ffxo
the thermal expansion becomes!
2.2 (1)
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TABLE 1.+ CALCULATED VALUES OF MEAN SQUARE VIBRATIONAL AMPLITUDE
AT VARIOUS TEMPERATURES

{atomic welght)

- 0 115 0.9 x 1018
10 hik 0.979
{26.97) 100 103 L3T
23 3% 3.19
hoo 368 b b2
600 375 7,03
o 0 323 0.533 x 10718
100 320 0.838
(63.5%) 293 31b 2.1
400 311 2.89
€00 304 4,49
K6 2% 7e12
he 0 211 0,479 x 10°18
292 210 2.85
(107.88) 952 203 3,48
b5 199 B.58
5h7 197 5.73
669 195 7.13
765 19% 8.22
619 193 8.90
873 19 9.7
977 185 11.56
1033 175 13.69
Au 8 182 0.30% x 1018
100 180 0.742
(197.2) 293 175 2,155
500 173 2.97
600 168 b.73
' %00 162 7.60
Fe o 451 0.435 x 10°18
98 4he 0.581
{55.85) 310 L35 1.379



-2

m laﬁi

ATED VALUES OF MEAN SQUARE VIBRATIONAL AMPLITUDE
AT VAKIOUS TEMPERNTURES FROM DEBYE CHARACTERIE

Lontinued
Material 7, g 8, % w2, c?
{atomic weight)
Fo 0 97.5 0.5h2 x 10°18
. 80 g 1,979
298 8.5 8,81
33% 79 13.06
76.5 16457
480 7545 17,77
540 73 21.,ho
570 Tx3 23.80
W
298 345 0.610
2063 345 2,100
1375 3he 2.79
1673 355 3.7%
1955 358 L.00 .
TiC 0 719 0.234 x 10438
290 766 0.865
(59.91) 10h3 730 2.86
1373 T80 3431
1673 730 4.58
1933 695 5,81
TN 0 713 0.2h8 x 10+18
; 298 T00 0.961
{61.01) 1029 665 2'25
1284 665 12
1534 675 L, 70
1692 €50 5461
ZxC 0 613 0.172 x 10°38
» 298 605 0.757
{103.23) 105 600 2,59
1373 580 302
1705 580 k.24
975 570 5,065
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TABLE 1.- CALCULATED VALUES OF MEAN SQUARE VIBRATIONAL AMPLITUDE
AP VARIOUS TEMPERATURES FROM DEBYE CHARACTERISTIC TEMPERATURES «

Concluded
Moterial 7, %K 8, °K W2, cu®
ZaN 0 Sh 0.191 x 10%18
, 298 540 O.9E2
{205.23) 10%0 520 3,155
1288 520 3,96
1539 518 b7

1699 518 5.2k
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TABLE 2.« CAICULATED VALUES OF THE FACTOR g©
FROM THE CURVES OF FIGURE o

e Isttice 2 2 2
Material reneter, Tt 4 T %
0 )
(lattice A A°
systen)
{f«ﬁcﬁ.)
(f&ﬁoe&}
Irom 2.866 517 1495 1.60 9.35
{becacs)
Gold beQT8 6460 15,16 3.03 b,3%
(ftﬁcﬁ,t }
Lead hoold 2.50 676 2.37 2,48
('fc Colle )
(f‘.caa»)
pangsten 3&165 6v5@ 16.40 1.62 10.12
i{ht@pﬁg} '
Titanium ko326 he69 15.10 *
carblde
(Mec1)
Titanium L.ehe k50 13.79 *®
nitride
{(Hac1 )
Zircondun h.606 5451 15,10 *
carbide
(BaC1)
Zirconium b.5T5 5.8 16,38 *
nitride
{8aC1)

%@e values not available.
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Figure 1.- Potential energy relationships for a pair of atoms.
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Figure 2.- Force relationships for a pair of atoms.
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Figure 3.~ Potential energy versus ©dx curve superimposed on the
curve of the potential energy of the crystalline solld as a
function of the mean distance between atoms, T. (The scale of
the former curve is magnified over that of the latter curve,
for clarity.)

=0

Figure 4.- Geometrical interpretation of forces between
atoms in a lattice when one atom is displaced from
its mean position.
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Figure 5.- The function {é(x) + X/%} versus x, where x = ©/T.
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Figure 6.~ Variation of Debye characteristic temperature with
temperature for several metals and compounds.
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Figure 7.=- Variation of mean square vibrational amplitude with
temperature for several metals and compounds.
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Figure 9.~ Variation of mean square vibrational amplitude with the
product of linear thermal expansion and r2 for several metals
and compounds.



